聚焦离子束加工中的主要缺陷
2017-01-12 12:57:35 来源:麦姆斯咨询 评论:0 点击:
聚焦离子束(FIB)是一种微纳米加工技术,其基本原理与扫描电子显微镜(SEM)类似,采用离子源发射的离子束经过加速聚焦后作为入射束,高能量的离子与固体表面原子碰撞的过程中可以将固体原子溅射剥离,因此,FIB更多的是被用作直接加工微纳米结构的工具。结合气体注入系统(GIS),FIB可以辅助进行化学气相沉积,定位诱导沉积生长微纳米材料和结构,或者辅助进行选择性增强刻蚀特定材料和结构。
在实际应用聚焦离子束加工制作微纳米结构时,由于FIB本身的特征及被加工材料的原因,最终加工制作出的结构有时会产生缺陷,这些缺陷主要包括:
倾斜侧壁
在聚焦的束斑内,离子呈现出高斯分布特征,越靠近束斑中心,离子的相对数量越大。如果离子束按单个像素点刻蚀轰击样品,将形成锥形截面轮廓的孔洞。随着刻蚀深度的增加,截面的锥度将逐渐减小直至饱和。因材料及其晶体取向不同,截面通常会有1.5~4°的锥度。
要想得到与样品表面完全垂直的截面,通常采用将样品人为倾斜特定的角度,以弥补截面与离子束入射角度之间的偏差。另外,还可以采用侧向入射的方式进行切割,通过定义刻蚀图案来控制截面与表面的角度,灵活地加工出形状更加复杂的三维微纳米结构。
窗帘结构
聚焦离子束加工样品截面时,另外一个需要关注的问题是截面的平整度,有时会在截面上出现竖直条纹,被称为窗帘结构。窗帘结构的形成与聚焦离子束切割固有的倾斜侧壁密切相关,当样品表面有形貌起伏或成分差异时,会产生刻蚀速率的差异,就会形成窗帘结构。
对于表面形貌起伏引起的窗帘结构,解决办法通常是在样品表面用FIB辅助化学气相沉积生长一层保护层,使表面变得平坦;也可以通过改变离子束的入射方向,从没有起伏的面开始切割,从而避开其影响。对于成分差异引起的窗帘结构,可以通过摇摆切割的方式,使离子束在多个角度入射进行消除。
非均匀刻蚀
聚焦离子束可以直接快速地加工制作微纳米平面图形结构,对于非晶体材料或单质单晶材料,FIB刻蚀通常可以得到非常平整的轮过形状和底面,但对于多晶材料和多元化合物材料,由于各个晶粒的取向不同,刻蚀速率在不同晶粒区域也会不同,经常会呈现非均匀刻蚀,底面并不平整。
对于多晶材料刻蚀出现的非均匀性加工缺陷,可以通过增大离子束扫描每点的停留时间来加以改善。聚焦离子束轰击固体材料时,固体材料的原子被溅射逸出的过程中,部分原子会落回样品表面,该过程称为再沉积。增大离子束在每点的停留时间,再沉积的影响就会增强,再沉积的原子落入凹陷处的几率更高,可以起到平坦化的作用,从而改善刻蚀底面的平整性。
左图为未使用XeF2时离子束切割后的截面流水效应,右图使用XeF2辅助刻蚀,切割后表面就比较平整
对于多元化合物材料产生的非均匀刻蚀缺陷,通常可以采用气体辅助增强刻蚀的方式,使逸出较慢的原子与反应气体形成更低熔点的化合物而被快速刻蚀去除。
反应气体残留污染
聚焦离子束加工结合气体注入系统可以实现辅助化学气相沉积,定位生长特定的纳米结构,这种方法被称为聚焦离子束诱导沉积。但是,反应气体残留污染是一个不容忽视的问题,同时,反应气体也可能残留在样品表面造成污染。
去除反应气体残留污染的方法通常是对样品进行加热使其更快脱附,也可以采用离子轰击进行刻蚀去除。
结论
聚焦离子束技术因其直接灵活的优势,逐渐在众多领域得到了应用。在加工制作各种微纳米结构的过程中,有时会产生加工缺陷,剖析这些加工缺陷产生的物理根源,研究减轻或消除这些缺陷的方法,能够提高聚焦离子束的加工性能,尽量得到符合预期设计的微纳米结构。
北京埃德万斯离子束技术研究所股份有限公司自主研发的离子束刻蚀机、离子束溅射镀膜机是非硅微纳机电制造的核心设备。其通用离子束刻蚀系统,除了可进行传统微纳结构刻蚀外,还可实现离子束清洗、材料表面抛光和材料减薄等功能,还可实现化学辅助离子束刻蚀(CAIBE)与反应离子束刻蚀(RIBE)。公司自主研发的离子束溅射薄膜沉积系统具有最宽范围材料适用性、最佳的沉积环境、优良的清洗功能、高密度金属厚膜、高材料利用率以及辅助溅射功能。
上一篇:长电科技整合星科金朋协同效应显现
下一篇:聚焦离子束应力引入致形变技术